Development of a Novel Gas Pressurized Stripping (GPS)-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

Project Continuation Request for Initiating Budget Period 3 Tasks

DOE funding award DE-FE0007567

Shiaoguo (Scott) Chen Carbon Capture Scientific, LLC.

May 9, 2014

Pittsburgh, PA

Purpose and Presentation Outline

Purpose: Present BP2 progress and accomplishments and actual status of achievement against success criteria. Present project continuation request and agree with DOE-NETL to proceed to Budget Period 3 tasks.

Presentation Outline:

- Project background
- Project progress and accomplishment in Budget Period 2
- Key Budget Period 2 milestone status
- Project continuation request and agreement with DOE-NETL to proceed to Budget Period 3 tasks
- Tasks, milestone and success criteria for Budget Period 3
- Budget status and budget projections for Budget Period 3

About Carbon Capture Scientific, LLC

- Early stage company located in Pittsburgh, PA
- Two patent granted CO₂ capture technologies
- Bench-scale development funded by the Department of Energy / National Energy Technology Laboratory
- Chemical Engineers/Scientists with strong expertise in process design, simulation and optimization
- Technology development based on transition from thermodynamic analysis, to process simulation, to bench scale prototyping

Project Participants

Partner/ Organization	Lead Contact(s)	Key Role(s)
DOE-NETL	Andrew P. Jones, Project Manager	-Funding & Sponsorship
Carbon Capture Scientific, LLC	Shiaoguo (Scott) Chen, PI Zijiang (John) Pan, Co-PI	-Process optimization-Bench-scale experiments
CONSOL Energy Inc.	Daniel P. Connell, Co-PI Richard Winchel, Technical advisor	-Phase equilibrium experiments and related process design
Nexant Inc.	Gerald Choi, PI Robert Chu, Sr. Chemical Engineer	-Techno-economic analysis
Western Kentucky University	Prof. Wei-Ping Pan, PI	-Consultant on corrosion testing
HiGee USA	Prof. Jiangfeng (Jeffery) Chen Pl	-Specialty equipment (RPB) provider

Project Budget

Project duration: 10/1/2011 - 6/30/2015

	BP1		BP2		BPS		
	10/01/11-0	9/30/12	10/01/12-06/30/14		07/01/14-06/30/15		
	Government Share	Cost Share	Government Share	Cost Share	Government Share	Cost Share	Total
CCS, LLC	\$802,593	\$254,342	\$1,312,921	\$223,182	\$223,813	\$68,136	\$2,884,987
CONSOL	\$147,549		\$40,000		\$40,000		\$227,549
Nexant	\$89,027		\$67,385		\$88,865		\$245,277
WKU	\$14,989	\$0	\$44,059	\$14,009	\$0	\$0	\$73,057
HiGee USA			\$109,999	\$180,177	\$18,550	\$11,334	\$320,060
Total	\$1,054,158	\$254,342	\$1,574,364	\$417,368	\$371,228	\$79,470	\$3,750,930

Project Objectives

Overall Objective

 Develop a breakthrough Gas Pressurized Stripping (GPS) process-based technology for CO₂ capture from post-combustion flue gases.

Specific Objectives

- Perform bench-scale tests of individual process units to obtain necessary process design data for the pilot scale.
- Conduct computer simulations to maximize the benefit of the GPS technology for existing power plants.
- Carry out experimental investigation of selected solvents to minimize the economic risk of the GPS technology.
- Perform bench-scale tests of a rotating packed bed (RPB) to evaluate cost reduction potential.
- Design, build, and test a GPS skid capable of processing 500 SLPM actual coalderived flue gas in a column-based GPS system operating at the National Carbon Capture Center (NCCC).

BP2 Tasks

Task #	Description	Simulation / Experiment	Focus
1	Project planning & management		Project management
3	Optimization of GPS process for existing plant	Simulation	Identify optimal operating conditions for GPS process
4	Simulation of alternative separation for GPS stripping gas	Simulation	Identify separation process to follow GPS process
7	GPS column design/ fabrication and testing	Experiment	Experimentally validate GPS concept
8	Second absorption column testing	Experiment	To recover stripping gas
10	Corrosion test at high loading and high temperature	Experiment	Obtain corrosion data
11*	RPB unit evaluation at CCS Laboratories	Experiment	Assess RPB potential to replace conventional column
14	Revision of techno-economic analysis	Simulation	Identify cost reduction potential
16*	GPS system design/ fabrication and installation	Experiment	Establish a skid mounted GPS system

^{*} Revised or new task for BP2

Revised Milestones for BP2

Task	Title/Description	Planned Completion Date	Actual Completion Date	Verification Method
1	Host site agreement executed	6/30/2013	7/2/2013	Written notification from NCCC
3	Overall energy performance of system less than or equal to 0.22 kwh/kg CO ₂	9/30/2013	12/31/2012	Review with NETL / Presentation of data
4	Overall energy performance of system less than or equal to 0.20 kwh/kgCO ₂	9/30/2014	2/25/2013	Review with NETL / Presentation of data
7	GPS column efficiency experimental measured at 50% or greater	9/30/2013	2/25/2013	Review with NETL / Presentation of data
14	Capital cost of the GPS process is no more than 20% higher than conventional amine-based processes	9/30/2013	2/25/2013	Review with NETL / Presentation of data
16	Complete design of bench-scale GPS test unit for conventional columns	4/30/2013	5/20/2013*	Design report
16	Completion of the fabrication and shakedown of the skid-mounted GPS system using water and air	6/30/2013	Projected 5/16/2014	Review with NETL / presentation of data
16	Complete installation of 500 SLPM column-based GPS bench unit at NCCC	8/31/2013	Projected 6/30/2014	Review with NETL / NCCC

Quantitative Success Criteria for BP2

Task	Description	Planned Completion Date	Actual Completion Date	Verification Method
3	Overall energy performance of column and solvent less than or equal to 0.22 kwh/kg CO ₂	9/30/2013	12/30/2012	Review with NETL / Presentation of data
4	Overall energy performance of system less than or equal to 0.20 kwh/kgCO ₂	9/30/2014*	2/25/2013	Review with NETL / Presentation of data
7	GPS column efficiency experimental measured at 50% or greater	9/30/2013	2/25/2013	Review with NETL / Presentation of data
14	Capital cost of the GPS process is no more than 20% higher than conventional amine-based processes	9/30/2013	2/25/2013	Review with NETL / Presentation of data

^{*} Originally success criteria for BP3

Project Progress and Accomplishments by Tasks (BP2)

Task	Description	Key Objectives	Accomplishments
1	Project plan and management	Management	Updated SOPO and PMP
3	GPS optimization for existing plant	Achieve overall energy performance ≤0.22 kwh/kg CO ₂	Success criteria met
4*	GPS simulation for alternative separation processes	Achieve energy performance of $\leq 0.20 \text{ kwh/kg CO}_2$	Success criteria met
7	GPS column design/ fabrication & testing	GPS column efficiency ≥ 50%	Success criteria met
8	2 nd absorber design/ fabrication & testing	CO ₂ content in stripping gas <5%	Achieved
10	Corrosion testing at high loading & temperature	Testing corrosion rate for carbon steel and stainless steel under various condition	Corrosion manageable
11*	RPB unit evaluation at CCS Laboratories	Obtain design modification for RPB under GPS operation	RPB reduce equipment footprint by 20X or more
14	Revision of techno-economic analysis	GPS capital increase ≤ 20% of DOE baseline	Success criteria met
16*	GPS skid design/ fabrication and installation	Fabricate GPS skid for 500 SLPM flue gas and be tested at NCCC	Design/fabrication completed Shakedown test in progress

^{*} Revised or new tasks for BP2

Task 1: Project Planning and Management

Purpose

Project planning and Management

Accomplishments

- Updated project management plan
- Revised SOPO three times for BP2
 - Introduced Rotated Packed Bed (RPB) into the GPS system to reduce the capital cost of the conventional column based system and design a skid system with dual testing capability with column and RPB
 - Eliminated the dual testing capability of the skid system due to limited budget
 - Revised the Tasks related to testing of the GPS skid at NCCC
- NEPA preparation and review
- Host site agreement

Task 3: Optimization of GPS process for existing plant

Purpose

 To identify optimal design and operating mode of the GPS process for existing power plant

Accomplishment

 Guided by techno-economic analysis from Nexant process design and operating conditions of the GPS system were optimized

Items	Baseline MEA	GPS Process
Operating Pressure (atm)	1.8	~10
Reaction Heat (kJ/kgCO ₂)	1870	1680
Sensible Heat (kJ/kgCO ₂)	990	220
Stripping Heat (kJ/kgCO ₂)	690	182
Total Heat (kJ/kgCO ₂)	3550	2082
Electricity Equivalent (kWh/kgCO ₂)	0.29*	0.13
Other load (kWh/kgCO ₂)	0.04	0.04
Compression Work (kWh/kgCO ₂)	0.09	0.05
Electricity Equivalent (kWh/kgCO ₂)	0.42	0.22**

^{*}No back pressure turbine was used

^{**} Success criteria <0.22kWh/kgCO₂

Task 3: Optimization of GPS process for existing plant

Task 4: Simulation of alternative separation for GPS stripping gas

Purpose

To identify alternative separation process for stripping gas recovery

Accomplishment

 Identified compression/refrigeration method as a better alternative to second absorption process, overall energy performance:

Capture percentage, %	90.20
CO ₂	97.63
CO ₂ product purity mol.%	0.24
N_2	2.13
Heat requirement (electricity equivalent), kWh/kg CO ₂	0.131
Electricity need, kWh/kg CO ₂	0.065
Overall energy performance, kWh/kg CO ₂	0.196

Met success criteria of energy performance column and solvent ≤ 0.20 kwh/kgCO₂

Task 4: Simulation of alternative separation for GPS stripping gas

Task 7: GPS column design/fabrication and testing

Purpose

To experimentally validate the GPS concept

Accomplishment

- Validated computer simulation results
- Proved GPS can achieve high pressure CO₂ product
- Energy efficiency is much higher
- Produced pure enough CO₂ product without second absorption or compression/refrigeration

Task 7: GPS column design/fabrication and testing

Run	1	2	3	4	5	6
liquid flow rate (g/min)	74.4	65.5	115	115	110	110
Heat GPS (W)	93.9	83	154.9	192.7	137	146
Sensible Heat (W)	29.0	25.5	64.1	96.1	48.9	73.5
Reaction + Stripping (W)	64.9	57.5	90.8	96.6	88.0	72.5
Equivalent Reaction + Stripping (KJ/Kg CO2)	1377 1386 1248 1327 1266					1042
Theoretical Minimum	818					

$$\Delta H_{min} = R \frac{T_2 T_1}{T_2 - T_1} \ln \left(\frac{P_2}{P_1} \right)$$

$$\frac{\Delta H_{min}}{\Delta H_{exp}} = \frac{818 \text{ kJ/kg} \text{CO}_2}{1274 \text{ kJ/kg} \text{CO}_2} = 64\%$$

Experimentally observed GPS operations achieving a thermal efficiency of 64% (milestone of 50%)

Task 8: Second Absorption Column Test

Purpose

Recover the stripping gas in purity of 95% (CO₂ < 5%vol.)

Accomplishment

- Designed, fabricated and tested the 2nd absorption column.
- Performed parametric tests including temperature and gas/liquid ratio.
- Obtained the anticipated experimental results: stripping gas can be easily recovered by the 2^{nd} absorption for CO_2 concentration < 5%vol.

Task 10: Corrosion Test at High Loading and Temperatures

$$k = \frac{weight\ lost}{surface\ area*density*exposure\ time}$$

	CCS Solvent									
	Rich solvent			Lean solvent				Lean Solvent with O ₂		
	20 C	50 C	80 C	20 C	50 C	80 C	100 C	110 C	20 C	50 C
Stainless 304L	0.032	0.044	0.08	0.031	0.097	0.058	0.306	0.961	0.011	0.048
Stainless 316 L	0.109	0.025	0.254	0.013	0.046	0.072	0.279	0.84	0.053	0.057
Carbon Steel	0.024	0.035	0.114	0.033	0.035	0.27	0.363	1.23	0.035	0.197

Task 11. RPB Unit Evaluation at CCS Laboratories

Schematic of Rotating Packed Bed

Lab Scale Rotating Packed Bed

Task 11. RPB Unit Evaluation at CCS Laboratories

Equivalent Height Ratio = Equivalent Column packing height/RPB packing height

Task 11. Intrinsic Reaction Rate and RPB Residence Time

Gas Phase Residence Time in Lab RPB: 1.3s

Amine	Rate Constant	[Amine]	Reaction	Time to absorb	RPB typical
	\mathbf{k}_2		Rate	one mol CO ₂ /L	residence time
	m³/mol·s	mol/m ³	mol/m³⋅s	S	S
MEA	10.4	3000	97107.56	0.010	
PZ	26	3000	242768.9	0.004	0.1
MDEA	0.0124	3000	115.7821	8.637	

Task 14. Revision of Techno-Economic Analysis

Purpose

 To reassess technoeconomic performance for GPS technology based on new information

Accomplishment

- Guided computer simulation task to optimize process
- Achieved capital equipment cost increase of <20% milestone

	Baseline	GPS 20%	GPS/Refriger
	Case 12	Recycle	ation
Total Output at Generator Terminals, kW	663,445	753,660	761,644
Auxiliary Load Summary, kW:			
Coal Handling and Conveying	490	490	490
Limestone Handling & Reagent Preparation	1,270	1,270	1,270
Pulverizers	3,990	3,990	3,990
Ash Handling	760	760	760
Primary Air Fans	1,870	1,870	1,870
Forced Draft Fans	2,380	2,380	2,380
Induced Draft Fans	10,120	10,120	10,120
SCR	70	70	70
Baghouse	100	100	100
FGD Pumps and Agitators	4,250	4,250	4,250
Misc Balance of Plant	2,000	2,000	2,000
Steam Turbine Auxiliaries	400	400	400
Condensate Pumps	630	630	630
Cooling Water Circulation Pumps **	12,260	15,476	15,476
Cooling Tower Fans	6,340	4,459	4,459
Transformer Losses	2,300	2,613	2,613
Amine CO ₂ Capture Plant Auxiliaries	21,320	22,243	22,568
CO ₂ Compression	46,900	33,828	34,100*
Total Auxiliaries, kW	117,450	106,949	107,546
Net Power Export, kW	545,995	646,711	654,098
Net Plant Efficiency, % HHV	27.2	32.2	32.6
Net Plant Heat Rate, Btu/kW	12,536	10,584	10,464
			N.A

^{*}was calculated based on 5C of DOE oxyfuel report

Task 14: Revision of Techno-Economic Analysis

Type	e of CO ₂ Capture Technology	Case 11	Case 12	GPS with 20%	GPS
	er Production, MW	(No Capture)	(MEA Baseline)	Recycle	Refrigeration
	Gross Power	580	663	754	762
	Net Power	550	546	647	654
Ca	pital Cost, \$MM				
	Power Plant	866.4	1109.9	1123.7	1123.7
	PCC Plant	0.0	410.8	470.9	447.5
	CO2 Compression and Drying	0.0	46.4	55.0	75.8
	Start Up Costs (2% TPC)	15.5	26.4	27.6	27.7
	Total Capital Cost, \$MM	881.9	1,593.5	1,677.3	1674.7
Ор	erating Cost excl Fuel, \$MM/yr				
	Fixed Operating Cost	13.8	20.5	22.9	22.9
	Variable Operating Cost				
	Non PCC related Opt Cost	20.0	33.6	35.6	35.6
	NaOH		0.9	0.9	0.9
	H2SO4		0.3	0.3	0.3
	Amine M/U		1.0	1.1	1.1
	Active Carbon		0.6	0.5	0.5
	Corrosion Inhibitor/Solvent MU		0.0	0.0	0.0
	Total Operating Cost excl Fuel, \$MM/yr	33.8	56.9	61.3	61.3
Fu	el Cost, \$MM/yr	64.5	92.0	92.0	92.0
	OE (excl CO2 TS&M), mills/kWh	63.9	112.0	98.7	97.6
%	of Case 11 LCOE - Compare to 2007	100%	175%	154%	153%

Purpose

 To build a 10kWe (500SLPM) skid mounted continuous GPS system to be tested in real flue gas at NCCC

Accomplishments

- Completed process design (P&ID) with assistance from NCCC
- Changed vendor for skid fabrication to ensure quality
- All safety designs approved by NCCC (DHR meeting)
- Finished skid fabrication
- Shakedown tested GPS skid system
- Prepared Tier I and Tier II documents as required by NCCC

NCCC interactions

- CCS team visited NCCC in January 2013 and April 2013
- CCS skid design review meeting on 11/20/2013
- CCS skid DHR meeting on 2/20/2014
 - Addressed a few changes of skid design and fabrication
 - Management of Changes were made and reviewed by NCCC team
- Several CCS-NCCC conference call

Vendor change

- Stopped Daylight Engineering activities
- Screened 7 potential vendors
- Signed contract with Ascension Industries

Fabrication of the skid system has been finished

- Shakedown tests in progress and will be finished by May 16, 2014
- Skid shipment is planned on May 19, 2014

Tier I documents

- Process Flow Diagram
- Preliminary P&ID's
- Major Equipment Specifications
- Design Pressures and Temperatures for each line/component noted on P&ID's
- Completed Work Plan that has been agreed to by the NCCC and the test partner
- Desired pressures and capacities for all process flows (process gases, utilities, vents, waste streams, and electricity)
- Estimated Motor Loads
- Test Partner Project Milestone Schedule
- General dimensions of process skid(s)
- Requested analyses from NCCC as well as summary of analytical equipment provided by test partner

Tier II documents

- Final P&ID's
- Equipment/Instrument Specifications
- Design Pressures and Temperatures for each piece of equipment, vessel, and all process piping
- Finalized Material Specifications
- Final Pressure Vessel fabrication drawings, U-1 reports, and code calculations
- Finalized process capacities and line sizes
- Finalized design, fabrication, and assembly schedule
- Test plan including commissioning and startup sequence, test matrix, operating parameters, etc.
- Finalized design drawings of process skid(s) and equipment showing dimensional details, anchor bolt patterns, location of all tie-in points, and weight of skid(s)
- All electrical loads, single line diagram, and motor elementaries
- System Communication needs* (connection to HMI's, DSL needs, wireless needs, etc.)

Funding and Costing Profile by Quarter for BP2

Baseline Reporting	BP2: Status 10/01/12 Ends 06/30/14										
Quarter	Q1	Q2	Q3	Q4	Q5	Q6	Q7				
Baseline Cost Plan											
Federal Share	224435	224435	224435	224435	224436	224436	224436				
Non-Federal Share	63104	63104	63104	63104	63105	63105	63105				
Total Planned	287539	287539	287539	287539	287541	287541	287541				
Cumulative Baseline Cost	1596039	1883578	2171117	2458656	2746197	3033738	3321279				
Actual Incurred Cost											
Federal Share	187571	203877	301255	265154	66439	269025	307135				
Non-Federal Share	18458	90669	126497	25023.1	53897	73379	60031				
Total Incurred Cost	206029	294546	427752	290177	120336	342405	367166				
Cumulative Incurred Cost	1539349	1833895	2261647	2551824	2672160	3014565	3381731				
Variance (Actual - Plan)											
Federal Share	-36864	-20558	76820	40719	-157997	44589	82699				
Non-Federal Share	-44646	27565	63393	-38081	-9208	10274	-3074				
Total Variance	-81510	7007	140213	2638	-167205	54864	79625				
Cumulative Variance	-56690	-49683	90530	93168	-74037	-19173	60452				

Budget Status for BP2

Total Cost	В	P2 Origina	al	BP2 (T	BP2 (Thru 04/27/2014) BF			BP2 (Projected)			BP2 Projected		
	DOE	Cost Share	Total	DOE	Cost Share	Total	DOE	Cost Share	Total	DOE	Cost Share	Total	
Personnel	\$349,540	\$123,451	\$472,991	\$398,173	\$168,814	\$566,987	\$44,926	\$23,265	\$68,191	\$443,099	\$192,079	\$635,177	
Fringe Benefits	\$90,181	\$31,850	\$122,032	\$102,729	\$43,554	\$146,283	\$11,591	\$6,002	\$17,593	\$114,319	\$49,556	\$163,876	
Travel	\$34,707	\$0	\$34,707	\$10,014	\$0	\$10,014	\$9,889	\$0	\$9,889	\$19,903	\$0	\$19,903	
Equipment	\$390,000	\$0	\$390,000	\$378,949	\$0	\$378,949	\$10,750	\$0	\$10,750	\$389,699	\$0	\$389,699	
Supplies	\$19,500	\$0	\$19,500	\$13,961	\$0	\$13,961	\$0	\$0	\$0	\$13,961	\$0	\$13,961	
Other	\$30,000	\$0	\$30,000	\$37,995	\$0	\$37,995	\$10,000	\$0	\$10,000	\$47,995	\$0	\$47,995	
Contractual	\$0	\$0	\$0										
Consol Energy	\$40,000	\$0	\$40,000	\$11,063	\$0	\$11,063	\$740	\$0	\$740	\$11,803	\$0	\$11,803	
Nexant Inc.	\$67,385	\$0	\$67,385	\$54,932	\$0	\$54,932	\$0	\$0	\$0	\$54,932	\$0	\$54,932	
HiGee USA	\$100,000	\$190,177	\$290,177	\$21,775	\$80,460	\$102,234	\$0	\$0	\$0	\$21,775	\$80,460	\$102,234	
WKU	\$30,000	\$0	\$30,000	\$10,000	\$14,007	\$24,007	\$0	\$0	\$0	\$10,000	\$14,007	\$24,007	
Subcontractor Total	\$237,385	\$190,177	\$427,562	\$97,770	\$94,467	\$192,236	\$740	\$0	\$740	\$98,510	\$94,467	\$192,976	
Total Direct Charges	\$1,151,313	\$345,478	\$1,496,792	\$1,039,591	\$306,834	\$1,346,425	\$87,896	\$29,267	\$117,163	\$1,127,487	\$336,101	\$1,463,588	
Overhead 46.29%	\$423,057	\$71,889	\$494,946	\$435,969	\$98,305	\$534,274	\$40,345	\$13,548	\$53,892	\$476,314	\$111,853	\$588,166	
Total Cost	\$1,574,371	\$417,367	\$1,991,738	\$1,475,560	\$405,139	\$1,880,699	\$128,240	\$42,815	\$171,056	\$1,603,800	\$447,954	\$2,051,754	

Project Continuation Request to Proceed to Budget Period 3 Tasks

- Project team has completed or positioned to complete by end of BP2 all milestones and met all success criteria.
- The superior performance of the GPS technology is clearly demonstrated by experiments and techno-economic analysis.
- Host site agreement completed.
- GPS skid of 500 SLPM will be installed.

Project team, therefore, requests:

- Continue project and proceed with Budget Period 3 tasks.
- Budget Period 3 from July 1, 2014 to June 31, 2015.
- Update project management plan and SOPO as appropriate.
- Negotiating budget modifications.
- Update PMP.

Planned Tasks for BP3

Task	Title/Description	Focus	Organization	Duration
1	Project Planning & Management	Project management	ccs	7/1/14~6/30/15
12	Survey of EH&S of GPS process	EH&S survey	ccs	1/1/15~6/30/15
15.0	Updated techno-economic analysis		NEXANT	7/1/14~6/30/15
15.1	Equipment sizing using updated data	Economics	NEXANT	7/1/14~12/31/14
15.2	Techno-economic analysis	Economics	NEXANT	1/1/15~6/30/15
17.0	Bench-Scale Testing of the Skid Mounted Column Based GPS System	Experimental	ccs	7/1/14~6/30/15
17.1	Bench unit commissioning	Process	CCS	7/1/14~7/31/14
17.2	Bench unit parametric testing	Process	ccs	8/1/14~9/30/14
17.3	Bench Unit long-term testing	Process and solvent	ccs	10/1/14~4/30/15
17.4	Equipment tear down and return to CCS facilities	Process	ccs	5/1/15~6/30/15

Subtask 17.1 Bench Unit Commissioning

Purpose

 Shakedown testing and calibrating the column based GPS system to ensure that the system works properly

- Solvent preparing and loading
- Shake down test
 - > Test of utility systems
 - > Test of safety systems per NCCC requirement
 - > Test of operation and automation functions
 - Functional test of critical sub-systems, including flue gas cooling system, absorber, GPS stripper, and heat exchangers
 - Calibrations of all measurements and analytical devices if needed
- Start up and steady state test
- Sampling test
- Heat loss calibration

Subtask 17.2 Bench Unit Parametric Testing

Purpose

To conduct steady state parametric tests of the GPS system at NCCC

- Investigate the effect of following parameters on CO₂ separation performance:
 - Total gas flow rate
 - Gas/Liquid mass ratio
 - GPS column operating pressure
 - Stripping gas flow rate

Subtask 17.3 Bench Unit Long-Term Testing

Purpose

• The objective of this long-term testing campaign is to validate solvent stability and other parameters affecting long-term performance

- To run the skid GPS system under continuous, steady-state and optimal conditions identified from parametric tests for at least 2000 hour.
- Solvent degradation will be assessed
- Identify any long term issues with the GPS system

Subtask 17.4 Bench Unit Decommissioning

Purpose

• To bring the GPS system from NCCC back to CCS for future use

- Tear down the GPS system
- Ship the skid system back to CCS

Proposed Milestones for BP3

Task	Title/Description	Planned Completion Date	Verification Method
1	Project Planning and Management	6/30/2015	Final Technical Report
12	Completion of Preliminary EH&S Assessment	6/30/2015	Topical Report
15	Completion of techno-economic analysis of the GPS system using updated data	6/30/2015	Topical Report
17	Complete commissioning of the skid-mounted GPS system at NCCC	7/31/2014	Review with NETL / NCCC
17	Completion of the parametric tests of GPS system at NCCC	9/30/2014	Review with NETL/NCCC
17	Completion of the cumulative running time of the GPS skid for more than 2000 hours	3/31/2015	Review with NETL / NCCC
17	Completion of equipment tear down and return to CCS facilities	6/30/2015	Review with NETL/NCCC

Quantitative Success Criteria for BP3

Task	Description	Planned Completion Date	Actual Completion Date	Verification Method
15	Increase in capital equipment costs of less than or equal to 10% over existing process	6/30/2015		Topical Report and Review with NETL
17	Overall energy requirement of the GPS process less than electricity equivalent of 0.23kWh/kgCO ₂	9/30/2014		Review with NETL / NCCC
17	Cumulative running time of the GPS system for >2000 hours	3/31/2015		Review with NETL / NCCC

Budget for BP3 Original and Revised

Total Cost	В	P3 Origina	ıl		3P3 Revised	j	ı	Project Tota	ı
	DOE	Cost Share	Total	DOE	Cost Share	Total	DOE	Cost Share	Total
Personnel	\$81,473	\$37,024	\$118,497	\$218,757	\$54,688	\$273,445	\$970,490	\$384,922	\$1,355,412
Fringe									
Benefits	\$21,020	\$9,552	\$30,572	\$56,439	\$14,110	\$70,549	\$250,386	\$99,310	\$349,696
Travel	\$38,999		\$38,999	\$31,627	\$0	\$31,627	\$58,212	\$0	\$58,212
Equipment			\$0		\$0	\$0	\$389,699	\$0	\$389,699
Supplies	\$8,500		\$8,500	\$13,500	\$0	\$13,500	\$173,399	\$0	\$173,399
Other	\$3,000		\$3,000	\$13,000	\$0	\$13,000	\$64,001	\$0	\$64,001
Contractual			\$0						
Consol Energy	\$40,000		\$40,000	\$5,000	\$0	\$5,000	\$164,352	\$0	\$164,352
Nexant Inc.	\$88,865		\$88,865	\$88,865	\$0	\$88,865	\$232,824	\$0	\$232,824
HiGee USA	\$18,550	\$11,334	\$29,884	\$0	\$0	\$0	\$21,775	\$80,460	\$102,234
WKU			\$0	\$0	\$0	\$0	\$24,989	\$30,091	\$55,080
Subcontractor Total	\$147,415	\$11,334	\$158,749	\$93,865	\$0	\$93,865	\$443,940	\$110,551	\$554,491
Total Direct	¢200.407	¢57.040	¢250 247	¢427.400	¢.co. 700	¢405.000	ća aro 430	¢504.702	ć2 044 011
Charges	\$300,407	\$57,910	\$358,317	\$427,188	\$68,798	\$495,986	\$2,350,128	\$594,783	\$2,944,911
Overhead 46.29%	\$70,820	\$21,560	\$92,380	\$154,295	\$31,846	\$186,142	\$889,313	\$231,596	\$1,120,909
Total Cost	\$371,227	\$79,470	\$450,697	\$581,484	\$100,644	\$682,128	\$3,239,441	\$826,379	\$4,065,820

BP3 Schedule Update

Task	Project Milestone	BP3 Duration 7/1/2014 ~6/30/2015		Planned	Planned End	Comments			
#	Description	Q1	Q2	Q3	Q4	Start Date	Date		
1.0	Project planning /management / reporting					10/1/2011	9/30/2014		
12.0	Survey of EH&S of GPS process					4/1/2014	9/30/2014		
15.0	Updated techno-economic analysis					7/1/2014	3/31/2015	Focus on techno- economics	
15.1	Equipment sizing using updated data					7/1/2014	12/31/2014		
15.2	Techno-economic analysis					10/1/2014	3/31/2015		
17.0	Bench-Scale Testing of the Skid Mounted Column Based GPS System					7/1/2014	6/30/2015	Focuses on skid unit testing at NCCC	
17.1	Bench unit commissioning					7/1/2014	7/31/2014		
17.2	Bench unit parametric testing					7/1/2014	9/30/2014		
17.3	Bench Unit long-term testing					10/1/2014	3/31/2015		
17.4	Equipment tear down and return to CCS facilities					4/1/2015	6/30/2015	Tear down of the system	

Questions/ Comments?

